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SUMMARY 
A simple physical approach for deriving the characteristic equations of fluid dynamics is presented. The 
approach is based on the physical concept that information propagates through a flowfield along pathlines 
due to particle motion and along wavelines due to acoustic wave motion. The characteristic equations and 
compatibility equations are derived in vector forms which are valid in any co-ordinate system. 
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INTRODUCTION 

The method of characteristics is one of the most important methods for solving the governing 
equations of fluid dynamics. It shows that there are special surfaces in the solution space on which 
linear combinations of the governing partial differential equations can be formed that contain 
derivatives only in the special surfaces themselves. These special surfaces are called characteristic 
surfaces, and the linear combinations of the governing partial differential equations that apply on 
these surfaces are called compatibility equations. 

Two families of characteristic surfaces exist. One family of characteristic surfaces consists of 
stream surfaces, which are surfaces composed of pathlines. The envelope of all of the stream 
surfaces passing through a point in the flowfield is the unique pathline passing through the point. 
The other family of characteristic surfaces consists of wave surfaces, which are surfaces composed 
of acoustic waves. The envelope of all wave surfaces at a point in the flowfield is the Mach conoid. 
The line of contact between a particular wave surface and the Mach conoid is called a waveline 
(bicharacteristic and ray path are more commonly used). The Mach conoid is composed of an 
infinite number of wavelines. 

The compatibility equations that are valid along the stream surfaces and wave surfaces can be 
written as interior operators within those surfaces, which have derivatives only within those 
surfaces. In particular, they can be written as directional derivatives along the pathline and the 
wavelines passing through each point in the flowfield. Information is propagated through the 
flowfield along these paths. The method of characteristics yields critical insights into the range of 
influence of initial data and the domain of dependence of solution points. The method of 
characteristics also gives insights into the proper specification of boundary conditions. 
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There are several ways to derive the characteristic and compatibility equations from the 
governing partial differential equations.lP6 For unsteady one-dimensional flow or steady two- 
dimensional supersonic flow, the mathematical procedures are straightforward. However, for 
unsteady two- and three-dimensional flows, the mathematical complexity of the existing deriva- 
tions (e.g. Rusanov3 and Hoffman6) conceals the physical concepts that underly the method of 
characteristics. Apparently this has caused most computational fluid dynamicists to ignore this 
powerful approach to understanding and solving unsteady two- and three-dimensional flow 
problems. 

The objective of this work’ was to derive the characteristic and compatibility equations by a 
simple physical approach. The derivation is based on the physical concept that information 
propagates through a flowfield along pathlines due to particle motion and along wavelines due to 
acoustic wave motion. The characteristic and compatibility equations are presented in vector 
forms which are valid in any co-ordinate system. 

GOVERNING EQUATIONS 

The governing equations for unsteady one-, two- or three-dimensional flow are the continuity 
equation, the momentum equation and the energy equation. Those equations are4 

DP 
- + p v - v  = 0, 
Dt 

DV 
p- + VP = F, 

Dt 

DP ,DP _ _  Dt a - = $  Dt ’ (3) 

where Dp/Dt, DV/Dt and DP/Dt are particle derivatives, commonly called substantial or 
material derivatives, which are directional derivatives along the pathline, and F and $ are source 
terms, if present. The operator D( .)/Dt is defined as 

Equations (1) and (3) can be combined to eliminate the derivatives of density. Thus 

DP 
Dt 

~ + pa2V.V = 9. 

The thermal equation of state and the speed of sound are specified by the functional relationships 

T = T(P,  p) and a = a(P,  p). (6) 

PARTICLE MOTION AND ACOUSTIC WAVE MOTION 

Information propagates through a flowfield by particle motion and acoustic wave motion as 
shown in Figure 1. Figure 1 illustrates a change in the position vector r by dr. When dr is aligned 
in the direction of the particle velocity V, 

dr Dr 
- = V = - 
dt Dt (along pathlines), (7) 
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/ X 

Figure 1 .  Particle motion and acoustic wave motion 

where dt is the time required for the fluid particle to move the displacement dr. In Cartesian 
co-ordinates, equation (7) is 

DX = uDt, Dy = uDt, DZ = WDt, (8) 
where D( .) denotes the differential along the pathline and u, u and w are the particle velocity 
components in the x-, y- and z-directions respectively. 

For acoustic wave motion, information propagates in all directions from a point at  the speed of 
sound a relative to the particle velocity V. Thus the absolute velocity of wave motion V, is the 
sum of the particle velocity V and the relative velocity of the acoustic wave in the direction of the 
arbitrary unit vector n, which is an. Thus 

dr 9 r  
- = V, = V + an = - (along wavelines), 
dt  9 t  (9) 

where dt is the time required for the acoustic wave to move the displacement dr. In Cartesian 
co-ordinates, equation (9) is 

9 x  = (u + an,)9t ,  B y  = (u  + any)9t ,  9 2  = (w + an,)9t, (10) 

where B(.) denotes the differential along the waveline and n,, ny and n, are the components of n in 
the x-, y- and z-directions respectively. The absolute velocity of propagation of acoustic waves 
relative to the co-ordinate axes depends on the particle velocity V, the speed of sound a and the 
direction n. Thus there are an infinite number of acoustic wave velocities corresponding to the 
infinite number of choices for the direction of the arbitrary unit vector n, even though the speed of 
sound relative to the particle has only one value (i.e. a) at a point in the flowfield at a given time. 

PARTICLE DERIVATIVE AND WAVE DERIVATIVE 

According to the Eulerian description of fluid flow, any fluid property f is expressed as a function 
of the time t and the space co-ordinate r. Thus 

f =f(t, r). (1 1) 
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The total derivative offwith respect to time t is given by 

which in Cartesian co-ordinates is 

dx dy dz 
d f  = f, +fx +& +Jz z. dt 

The value of dr in equation (12) is arbitrary, so that equation (12) specifies dffor any arbitrary 
change of position dr. 

Two special choices for dr/dt are of interest: dr/dt for particle motion and dr/dt for acoustic 
wave motion. Substituting equation (7) for particle motion into equation (12) yields 

Df =f, + v-Vf = -, 
Dt 

where dfldt denotes the directional derivative following a fluid particle, which is the substantial 
derivative Df/Dt. Substituting equation (9) for acoustic wave motion into equation (12) yields 

9f =f, + (V + un).Vf = -, 9 t  

where dfdt denotes the directional derivative following an acoustic wave, which is the acoustic 
wave derivative 9f/9t. Combining equations (14) and (15) gives the following relationship 
between the particle derivative and the wave derivative: 

COMPATIBILITY EQUATIONS 

The compatibility equations are linear combinations of the governing equations that consist of 
directional derivatives in special directions. From physical concepts we know that information 
propagates through a flowfield by particle motion and acoustic wave motion. Consequently the 
compatibility equations can be derived by forming the appropriate combinations of the pro- 
jections of the governing equations in the direction of particle motion and in the direction of 
acoustic wave motion. 

The energy equation, equation (3), contains directional derivatives only in the direction of 
particle motion. Consequently it is already a compatibility equation applicable along a pathline. 

There are no wave derivatives appearing explicitly in the governing equations. Consequently 
they must be introduced by rearranging the equations. This is accomplished by expressing the 
particle derivatives in the governing equations in terms of acoustic wave derivatives by using 
equation (16). The substantial derivatives of velocity V and pressure P are expressed in terms of 
acoustic wave derivatives by lettingfin equation (16) be V and P respectively. Those expressions 
are then substituted into equation (2) and (5) respectively, which are then combined to obtain the 
waveline compatibility equation. 

First let the fluid propertyfin equation (16) be the particle velocity V. Then 

DV 9 V  
a(n V)V. __--- - 

Dt 9 t  
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Substituting equation (17) into equation (2) yields 

9 V  
9 t  

p -  - pa(n*V)V + VP = F 

Forming the dot product of an with equation (18) gives 

9 V  
9 t  

pans- - pa2n*(n*V)V + an .VP = an-F.  

Next let the fluid propertyfin equation (16) be the pressure P. Then 

DP 9 P  
Dt 9 t  

- an * VP. 

Substituting equation (20) into equation (5) gives 

9 P  
9 t  
_-  

405 

(18) 

Substituting an .  VP from equation (21) into equation (19) yields 

9 P  + pan-- B V  - pa2[n*(n-V)V - 
9 t  9t 

Equation (22) is the compatibility equation that is valid on wavelines. It contains directional 
derivatives of V and P along the wavelines, some derivatives of V, called cross-derivatives, which 
are normal to the wavelines, and the source terms an.  F + $. Equation (22) is in vector form and 
can be applied in any co-ordinate system. 

The momentum equation, equation (2), is simply Newton's second law of motion applied to a 
fluid particle. Since it is a vector equation, it can be written as three independent equations each 
containing components only in a single spatial direction, e.g. the three co-ordinate directions. 
Consequently the three component momentum equations are compatibility equations. The three 
independent directions are arbitrary. The component of the momentum equation, equation (2), in 
the direction of the arbitrary unit vector s in physical space is 

D V  
P S * -  + S - V P  = s . F .  

Dt 

Equation (23) contains derivatives along the pathline in r-t space in the direction of the vector s in 
physical (i.e. r) space. Consequently the equation does not apply in one space dimension. 
Therefore equation (23) is a compatibility equation only in unsteady two- and three-dimensional 
flows. 

In summary, three compatibility equations exist: equations (3), (22) and (23). There are infinite 
number of wavelines passing through every point in a flowfield corresponding to the infinite 
number of choices for n, so equation (22) represents an infinite number of waveline compatibility 
equations. There are two or three independent directions s in two- or three-dimensional physical 
space respectively, so equation (23) represents two or three compatibility equations. Con- 
sequently there exist an infinite number of compatibility equations at every point in a flowfield. 

There are three, four or five governing equations corresponding to one-, two- or three- 
dimensional flow respectively. Since the compatibility equations are simply linear combinations 
of the governing equations, there can be only three, four or five independent compatibility 
equations corresponding to one-, two- or three-dimensional flow respectively. Since the derivative 
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t 

of density appears only in equation (3), the energy equation., the energy equation must be included 
in any set of independent compatibility equations. Several choices exist for the remaining 
compatibility equations required to obtain a complete independent set of compatibility equa- 
tions. The possible complete sets of independent compatibility equations for one-, two- and three- 
dimensional flow are discussed in the following sections. 

initial-&to points 

(3 Solution point 

interpolated points 

UNSTEADY ONE-DIMENSIO'NAL FLOW 

For this case, r = ix, V = iu and n = in,, where n, = k 1. Equations (8) and (10) become 

DX = uDt (along pathlines), 

(along wavelines), 9x* = (u i a)'& 

where Dx denotes the change in position along the pathline and 9 x +  denotes the change in 
position along the wavelines. The pathline and the wavelines passing through a solution point are 
shown in Figure 2, which illustrates the overall physical grid for unsteady one-dimensional flow. 
Points a, b and c are known initial data points. Point 4 is the solution point and points 1 ,2  and 3 
are the intersections of the rearward projected characteristics from point 4. The domain of 
dependence of the differential equations is the region along the initial value line between the 
outermost paths of information propagation from the initial value domain to the solution point, 
i.e. the region between the acoustic wavelines, x1 I x I x2. As shown by Courant, et a[.,* for 
stability the domain of dependence must be included within the convex hull of the difference 
scheme, which is the physical domain a-b-c. 

Equations (3) and (22) become 

DP - a2Dp = $ Dt, (26) 
9 P  + + pa 9 u  + = (ax - 6pa2u/x + $) 9 t ,  

9 P  - - pa 9 u  - = ( - a x  -. 6pa2u/x + $) 9 t ,  

where D( . )  denotes the total differential along the pathline, 9(.)+ and .9(.)- denote the 
total differentials along acoustic wavelines corresponding to n, = k 1 respectively, X is the 

lime t+dt 

HEoveline 
Pathline 

time t 
II b l l  

Differentid domain of d e d e n c e  

Finite difference k i n  of dependence - 
X 

Figure 2. Unsteady one-dimensional Row 
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x-component of F and 6 = 0, 1 or 2 for Cartesian, cylindrical or spherical co-ordinates 
respectively. Equations (26H28) comprise a complete set of compatibility equations for 
unsteady one-dimensional flow. 

The method of characteristics can be used to identify the conditions that must be satisfied at 
boundary points. For example, at a solid boundary point, either equation (27) or equation (28) is 
not applicable, since the waveline along which it applies lies outside of the flowfield. Con- 
sequently, only two compatibility equations exist. The third condition required to form a 
complete set of governing equations is furnished by the condition that u = 0 at a solid boundary. 
Other boundary conditions are implemented in an analogous manner. In all cases the method of 
characteristics furnishes a clear picture of the physics of the boundary condition. 

UNSTEADY TWO-DIMENSIONAL FLOW 

For this case, r = ix + jy, V = iu + j v  and n = in, + in,. Equations (8) and (10) become 

DX = uDt, Dy = uDC, (29) 

9 x  = (u + an,)9t,  B y  = (0  + an,)9t. (30) 
The pathline and the wavelines passing through a point are illustrated in Figure 3. 

The domain of dependence of the differential equations is the region in the initial value surface 
within the outermost paths of propagation from the initial value surface to the solution point. 
From Figure 3 it is obvious that this is the region within the Mach conoid which is composed of 
the infinite number of wavelines passing through the solution point. For stability of any 
numerical method, the differential domain of dependence must lie within the finite difference 
domain of dependence. 

Finite difference Differential &main 

7 I L 

Figure 3. Unsteady two-dimensional flow 
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Equations (3), (22) and (23) become 

DP - a2Dp = $Dt, 

= [u(n,x + ny Y) - 6pu2u/y t $1 gt, 

ps,Du + p s , D ~  + (dP/ds)Dt = ( s ,X + S ,  Y)Dt, 

(31) 

9~ + p u ( n , g u  + n y 9 u )  - pa2[(n:  - l)u,  + (ns - l)u., + n,ny(uy + u, ) ]% 

(32) 

(33) 

where 6 = 0 for Cartesian co-ordinates (i.e. planar flow) and 6 = 1 for cylindrical co-ordinates 
(i.e. axisymmetric flow). Equation (32) is valid for any direction n. Equation (33) is valid for any 
independent direction s, but for two-dimensional flow, s can have only two independent 
directions. Any other direction will be a linear combination of the first two directions. 

There can be only four independent compatibility equations for unsteady two-dimensional 
flow, and any complete set must include the energy equation, equation (31). The following three 
complete sets of independent compatibility equations are possible: 

(I) equations (31) and (32) for three independent choices for n 
(11) equations (31) and (32) for two independent choices for n, and equation (33) for one value 

of s 
(111) equations (31) and (32) for one value of n, and equation (33) for two independent choices 

for s. 

The choices for the direction of n in equation (32) and the direction of s in equation (33) are 
arbitrary, so there are many ways to choose a set of compatibility equations for numerical 
computations. Considerable simplifications occur in equation (32) when n is chosen in the 
directions of the co-ordinate axes. 

Since an infinite number of wavelines are required to define the complete differential domain of 
dependence and at most three waveline compatibility equations are independent, an exact match 
between the finite difference domain of dependence and the domain of dependence of the 
governing equations cannot be obtained. 

UNSTEADY THREE-DIMENSIONAL FLOW 

For this case, r = ix + jy + kz, V = iu + ju + kw and n = iin, + jn, + kn,. Equations (8) and (10) 
become 

DX = uDt, Dy = uDt, DZ = WDt, (34) 

a x  = (24 + u n x ) 9 t ,  (35) 9 y  = ( u  + an,)%, 9 z  = (w + un,)Qt. 

The domain of dependence of the differential equations is the region in the initial value 
hypersurface within the outermost paths of propagation from the initial value hypersurface to the 
solution point in xyzt hyperspace. For unsteady three-dimensional flow this region is determined 
by the intersection of the Mach hyperconoid with the initial value hyperspace. Since the solution 
hyperspace is four-dimensional ( i t .  x, y, z and t ) ,  it cannot be illustrated pictorially. The domain 
of dependence in the initial value space is illustrated in Figure 4. For stability of any numerical 
method, the differential domain of dependence must lie within the finite difference domain of 
dependence. 
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time t d 
Figure 4. Unsteady three-dimensional flow 

Equations (3), (22) and (23) become 

DP - a2Dp = $Dt, 

ps,Du+ps,D~+ps,Dw+(aP/a~)Dt = (s,X+S,Y+S,Z)D~. (38) 

Equation (37) is valid for any direction n. Equation (38) is valid for any independent direction s, 
but for three-dimensional flow, s can have only three independent directions. Any other direction 
will be a linear combination of the first three directions. 

There can be only five independent compatibility equations for unsteady three-dimensional 
flow. The following four complete sets of independent compatibility equations are possible: 

(I) equations (36) and (37) for four independent choices for n 
(11) equations (36) and (37) for three independent choices for n, and equation (38) for one value 

of s 
(111) equations (36) and (37) for two independent choices for n, and equation (38) for two 

independent choices for s 
(IV) equations (36) and (37) for one value of n, and equation (38) for three independent choices 

for s. 

The choices for the direction of n in equation (37) and the direction of s in equation (38) are 
arbitrary, so there are many ways to choose a set of compatibility equations for numerical 
computation. Considerable simplifications occur in equation (37) when n is chosen in the 
directions of the co-ordinate axes. 
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CONCLUSIONS 

A simple physical approach for deriving the characteristic and compatibility equations of fluid 
dynamics has been developed. This approach is based 011 the physical propagation paths (i.e. 
pathlines and acoustic wavelines) of information in a flowfield. The characteristic and compatibil- 
ity equations are derived in vector forms. Complete independent sets of equations for unsteady 
one-, two- and three-dimensional flows are presented. This simple physical approach to the 
method of characteristics gives physical insights into the important concepts of propagation 
paths, domains of dependence and properly posed initial and boundary conditions. 

APPENDIX: NOMENCLATURE 

speed of sound 
external and viscous forces 
unit vector in the direction of acoustic wave motion 
pressure 
position vector 
arbitrary unit vector in physical space 
time 
temperature 
Cartesian velocity components 
velocity vector 
Cartesian co-ordinates 
x-, y- ,  z-components of F 
density 
heat transfer, external work and viscous dissipation 

Subscripts 

x, y ,  z pertaining to the x-, y-, z-directions, or partial differentiation with respect to these 
directions 
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